面试——走进企业的主要途径,无论是知名企业还是一般的小企业,都是要经过面试官层层把控的,尤其是对于大数据技术人才的招聘,更是要好几轮,要面对不同级别的面试官。
想要从众多的应聘者中脱颖而出还是有一定的难度的。那话又说回来,怎么才能赢得面试官的青睐?怎么样才能拿下心仪的工作?不怕,千锋大数据培训班的老师来帮忙,千锋独家秘制的大数据开发面试题免费分享,让你笑傲江湖。
1.hadoop运行原理
包括HDFS和Mapreduce两部分。
1)HDFS自动保存多个副本,移动计算。缺点是小文件存取占用namenode内存,写入只支持追加,不能随机修改。
它存储的逻辑空间称为block,文件的权限类似linux。整体架构分三种节点,NN,SNN,DN
NN 负责读写操作保存metadata(Ownership Permission blockinfo)
SNN 负责辅助NN合并fsimage和edits,减少nn启动时间
DN 负责存数据,每个数据(文件)分割成若干block,每个block默认3个副本。启动后像NN发送心跳保持联系
NN保存的metadata在hdfs启动后加载到计算机内存,除block位置信息的metadata保存在OS文件系统中的fsimage文件中,对metadata的操作日志保存在OS文件系统中的edits文件中。block位置信息是hdfs启动后由DN上报NN再加载到内存的。
HDFS的安全模式:直到NN完全加载完metadata之前的这段时间。期间不能写入文件,DN检查各个block完整性,并修复。
2)MapReduce
离线计算框架,过程分为split map shuffle reduce四个过程
架构节点有:Jobtracker TaskTracker
Split将文件分割,传输到mapper,mapper接收KV形式的数据,经过处理,再传到shuffle过程。
Shuffle先进行HashPartition或者自定义的partition,会有数据倾斜和reduce的负载均衡问题;再进行排序,默认按字典排序;为减少mapper输出数据,再根据key进行合并,相同key的数据value会被合并;末后分组形成(key,value{})形式的数据,输出到下一阶段
Reduce输入的数据就变成了,key+迭代器形式的数据,再进行处理
2.MapReduce原理
逻辑上:
1、split
2、map
3、shuffle
4、reduce
四个过程
物理上:
JobTracker节点:JobTracker创建每一个Task(即MapTask和ReduceTask)
并将它们分发到各个TaskTracker服务中去执行。负责调度Job的每一个子任务task运行于TaskTracker上。
TaskTracker节点:运行在多个节点上的slaver服务。TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务。TaskTracker都需要运行在HDFS的DataNode上
3.hdfs存储机制
1) client端发送写文件请求,namenode检查文件是否存在,如果已存在,直接返回错误信息,否则,发送给client一些可用namenode节点
2) client将文件分块,并行存储到不同节点上datanode上,发送完成后,client同时发送信息给namenode和datanode
3) namenode收到的client信息后,发送确信信息给datanode
4) datanode同时收到namenode和datanode的确认信息后,提交写操作。
4.用mr设计一个分组排重计数算法
输入文件格式:二级域名,一级频道,二级频道,访问ip地址,访问者id
需求:按照二级域名,一级频道,二级频道分组,计算pageview数,计算独立ip数和独立访问者id数。
大数据产业已进入发展的“快车道”,急需大量优秀的大数据人才作为后盾。能够在大数据行业崛起的初期进入到这个行业当中来,才有机会成为时代的弄潮儿。技术在手,天下任我走;面试题我有,打遍天下无敌手!千锋大数据开发面试题免费分享,快去寻找自己心仪的工作吧!
相关文章
了解千锋动态
关注千锋教育服务号
扫一扫快速进入
千锋移动端页面
扫码匿名提建议
直达CEO信箱