全国旗舰校区

不同学习城市 同样授课品质

北京

深圳

上海

广州

郑州

大连

武汉

成都

西安

杭州

青岛

重庆

长沙

哈尔滨

南京

太原

沈阳

合肥

贵阳

济南

下一个校区
就在你家门口
+
当前位置:首页  >  技术干货

哪些机器学习算法不需要做归一化处理

发布时间:2022-09-07 17:15:29
发布人:syq

  在实际应用中,需要归一化的模型:

  基于距离计算的模型:KNN。

  通过梯度下降法求解的模型:线性回归、逻辑回归、支持向量机、神经网络。

  但树形模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、随机森林(Random Forest)。

哪些机器学习算法

  树形结构为什么不需要归一化?

  因为数值缩放不影响分裂点位置,对树模型的结构不造成影响。

  按照特征值进行排序的,排序的顺序不变,那么所属的分支以及分裂点就不会有不同。而且,树模型是不能进行梯度下降的,因为构建树模型(回归树)寻找最优点时是通过寻找最优分裂点完成的,因此树模型是阶跃的,阶跃点是不可导的,并且求导没意义,也就不需要归一化。

  在k-means或kNN,我们常用欧氏距离来计算最近的邻居之间的距离,有时也用曼哈顿距离,请对比下这两种距离的差别 欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中。

  数据归一化(或者标准化,注意归一化和标准化不同)的原因

  能不归一化最好不归一化,之所以进行数据归一化是因为各维度的量纲不相同。而且需要看情况进行归一化。

  有些模型在各维度进行了不均匀的伸缩后,最优解与原来不等价(如SVM)需要归一化。 有些模型伸缩有与原来等价,如:LR则不用归一化,但是实际中往往通过迭代求解模型参数,如果目标函数太扁(想象一下很扁的高斯模型)迭代算法会发生不收敛的情况,所以最好进行数据归一化。

相关文章

scrum master的核心竞争力是什么?

scrum master的核心竞争力是什么?

2023-10-14
什么项目适合使用Scrum?

什么项目适合使用Scrum?

2023-10-14
scrum敏捷软件开发是什么?

scrum敏捷软件开发是什么?

2023-10-14
敏捷BI和传统BI有什么区别?

敏捷BI和传统BI有什么区别?

2023-10-14

最新文章

常见网络安全面试题:Windows常用的命令有哪些?

常见网络安全面试题:Windows常用的命令有哪些?

2023-10-09
常见网络安全面试题:根据设备告警如何展开排查?

常见网络安全面试题:根据设备告警如何展开排查?

2023-10-09
常见网络安全面试题:mysql加固呢?(数据库加固)

常见网络安全面试题:mysql加固呢?(数据库加固)

2023-10-09
常见网络安全面试题:windows和linux加固?(操作系统加固)

常见网络安全面试题:windows和linux加固?(操作系统加固)

2023-10-09
在线咨询 免费试学 教程领取