全国旗舰校区

不同学习城市 同样授课品质

北京

深圳

上海

广州

郑州

大连

武汉

成都

西安

杭州

青岛

重庆

长沙

哈尔滨

南京

太原

沈阳

合肥

贵阳

济南

下一个校区
就在你家门口
+

当前位置:首页 > Spark

Spark repartition和coalesce的区别

repartition只是coalesce接口中shuffle为true的实现。不经过 shuffle,也就是coaleasce shuffle为false,是无法增加RDD的分区数的,比如你源RDD 100个分区,想要变成200个分区,只能使用repartition,也就是coaleasce shuffle为true。

2022-08-12

Spark groupByKey 和 reduceBykey 区别

reduceByKey 可以接收一个 func 函数作为参数,这个函数会作用到每个分区的数据上,即分区内部的数据先进行一轮计算,然后才进行 shuffle 将数据写入下游分区,再将这个函数作用到下游的分区上,这样做的目的是减少 shuffle 的数据量,减轻负担。

2022-08-12

Spark Cache,Presist,CheckPoint的区别

Persist 的 MEMORY_ONLY 级别的存储等于 Cache,Persist 其他的配置只是存储的方式不同,作用和原理是和 Cache 类似的,他们二者的区别如下:

2022-08-11

Spark Streaming 反压机制(Back Pressure)

Spark Streaming 反压机制是1.5版本推出的特性,用来解决处理速度比摄入速度慢的情况,简单来讲就是做流量控制。当批处理时间(Batch Processing Time)大于批次间隔(Batch Interval,即 BatchDuration)时,说明处理数据的速度小于数据摄入的速度,持续时间过长或源头数据暴增,容易造成数据在内存中堆积,最终导致Executor OOM。反压就是来解决这个问题的。

2022-08-11

Spark Streaming 窗口函数

理解窗口的两个关键概念,窗口长度(window length)和滑动间隔(slide interval)。 窗口函数会把原始 DStream 的若干批次的数据合并成为一个新的带窗口的DStream。其中窗口长度即每次生成新 DStream 需合并的原始 DStream 个数。滑动间隔即合并的原始 DStream 的时间间隔。

2022-08-11

热问标签

热门频道

在线咨询 免费试学 教程领取